METRIC SPACES: FINAL EXAM 2017

DOCENT: A. V. KISELEV

 $Evaluation: \ \min\Bigl(100\%, \max\bigl(5\,\mathrm{prb}\times20\%\cdot\big[^{1.00}_{1.15^{\mathrm{top}}}\bigr], \ \textstyle\sum_{i=1}^{6}\mathrm{h/w}\times5\%+5\,\mathrm{prb}\times14\%\cdot\big[^{1.00}_{1.15^{\mathrm{top}}}\bigr]\bigr)\Bigr).$

Problem 1. The discrete metric d_0 can take two values 0 and 1. Can a metric function $d_{\mathcal{X}}$ on a set \mathcal{X} attain exactly *three* distinct values?

Problem 2 (top). Let $S \subseteq \mathcal{X}$ be a subset of a space \mathcal{X} . Prove that the boundary ∂S of S is closed in \mathcal{X} .

Problem 3. Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a metric space and $\{U_i \mid i \in \mathcal{I}\}$ be a family of connected subsets $U_i \subseteq \mathfrak{X}$ such that $U_i \cap U_j \neq \emptyset$ for all indexes $i, j \in \mathcal{I}$. Prove that the union $U = \bigcup_{i \in \mathcal{I}} U_i$ is connected.

Problem 4 (top). Let \mathcal{X} be a non-empty compact Hausdorff space and a map $f: \mathcal{X} \to \mathcal{X}$ be continuous. By definition, put $\mathcal{X}_1 = \mathcal{X}$ and $\mathcal{X}_{n+1} = f(\mathcal{X}_n)$ inductively for all $n \in \mathbb{N}$.

• Prove that $A = \bigcap_{n=1}^{+\infty} \mathfrak{X}_n$ is non-empty.

Problem 5. Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a non-empty complete metric space. Suppose that $f, g: \mathfrak{X} \to \mathfrak{X}$ are two Banach contractions of \mathfrak{X} . Prove that there always exists a unique point $x_0 \in \mathfrak{X}$ such that $f(g(x_0)) = x_0$.

Date: April 4, 2017.

Do not postpone your success until 28 June. GOOD LUCK!